USBCAN-modul 16

Industrial USB to CAN converter

User Manual

Document version 5.0 (2017/06/16)

Contents

1. Introduction	4
1.1 Overview	4
1.2 Properties at a glance	4
1.3 Typical application	4
2. Installation	6
2.1 Driver and software installation	6
2.2 Connect to PC	6
2.3 Connect to CAN-Bus	6
3. Connection and use	8
3.1 Connect to USB	8
3.2 Connect to CAN	8
3.3 CAN-Bus terminal resistance	9
3.4 System LED	9
4. ECAN Tools introduction	11
4.1 Start	11
4.2 Transmit/Receive data	11
4.3 CAN-Bus diagnosis function	12
4.4 Relay & Offline	13
4.5 Other functions	14
5. Secondary development	15
6. Technical Specifications	13
Appendix: CAN2.0B frame format	14
Sales and service	16

1 Introduction

1.1 Overview

USBCAN-model 16 adapter is a debug or analysis tool with 16 CAN-Bus channels. Using this adapter, PC can quickly connect to CAN-Bus network through USB interface, and become a intelligent node of CAN-Bus to transmit/ receive CAN-Bus data.Adapter comes with isolation.Device driver, software and programming interfaces (VC, VB, Net, Delphi, Labview, C++Builder) exist for different Windows systems.

1.2 Properties at a glance

- Adapter for USB connection (USB 2.0, compatible with USB 1.1 and USB 3.0);
- Integrated 16-way CAN-Bus interface, the use of DB9 wiring;

• Support CAN2.0A and CAN2.0B frame format, accord ISO/DIS 11898 specification;

• CAN-Bus communication baud rate between 5Kbps~1Mbps arbitrary programmable;

- Use DC + 24V power supply;
- Galvanic isolation on the CAN connection up to 1500 V;
- Bit rates up to 1 Mbit/s Time stamp resolution 1μ s;
- Max received data traffic: 14000 fps;
- Device driver and software support Windows XP/7/8/10;
- Support ECAN Tools software;
- Extended operating temperature range from -40 to 85 ° C;
- Dimensions: (L)482mm * (W)119mm * (H)44mm.

1.3 Typical application

- Test CAN-Bus network or device;
- Automotive electronics development; Product data sheet

- Electrical system communication test.
- Industrial control network.
- Listen all CAN-Bus communication.

2 Installation

This chapter describes how to connect the USB-CAN adapter with a computer and the precautions when connecting the USB-CAN adapter with a computer for the first time.

2.1 Driver and software installation

Note: Before install the driver or software, please ensure that the user login an administrator account of Windows, or the user account has permissions to install the driver and software, otherwise it may lead to the installation failed.

2.1.1 Install driver and software

ECAN Tools has been integrated with hardware driver installation program, users can directly install ECAN Tools.

If you only need to install the driver, please enter the "driver" folder, select the installation file that corresponds to the system type. ("DriverSetup.exe" for 32-bit. "DriverSetup64.exe" for 64-bit)

2.1.2 Uninstall driver and software

Users can run the DriverSetup.exe/ DriverSetup64.exe and click "Uninstall" button to uninstall the installed device driver.

2.2 Connect to PC

USBCAN-modul 16 using DC +24V DC power supply, DC +24V and with USB access.

2.3 Connect to CAN-Bus

USBCAN-modul 16 interface card integrated 16-channel CAN channels, 16 DB9 (CiA) interfaces, the terminal pin is defined as shown in Table 2.1.

Pin	Port	Name	Function
1	CAN/DB9	NC/+5V	+5V
2	CAIN/DB9	CAN_L	CAN_L Signal line

3	GND	CAN_GND
4	NC	No definition
5	NC	No definition
6	GND	CAN_GND
7	CAN_H	CAN_H Signal line
8	NC	No definition
9	SHIELD	Shielded wire (FG)

Table2.1 USBCAN-modul 16 CAN-Bus signal distribution

Normally communication requires CAN_H with bus CAN_H, CAN_L with bus CAN_L.

3 Connection and use

3.1 Connect to USB

USBCAN-modul 16 interface card's USB interface conforms to the USB2.0 full speed protocol specification. It can be connected with PC machine interface with USB1.1 standard, USB2.0 standard, USB3.0 standard PC connection communication.

When driver and software have been installed, connect the adapter to the USB interface, a new USBCAN device named "GC - Tech USBCAN Device" can be found in the PC Device manager. If there is no "!" or "?" mark that the device run fine.

3.2 Connect to CAN

USBCAN-modul 16 adapter connect to CAN-Bus as chapter 2.3, CAN_H to CAN_H, CAN_L to CAN_L.

The CAN bus network adopts topological structure, only the two furthest terminal need to connect 120Ω terminal resistance between CAN_H and CAN_L. For branch connection, its length should not be more than 3m. CAN-bus nodes connection as shown in figure 3.1.

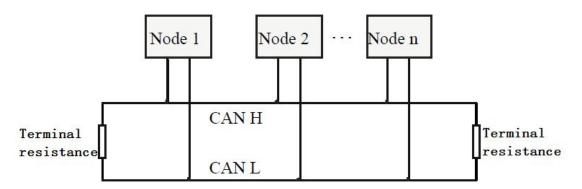


Figure 3.1 CAN-bus network

Note: the CAN-bus cable can use ordinary twisted-pair cable, shielded twisted-pair cable. Theory of the maximum communication distance depends on the bus baud rate, Their relationship are shown in the Table 3.1.

Baud rate	Distance
1 Mbit/s	40m

500 kbit/s	110m
250 kbit/s	240m
125 kbit/s	500m
50 kbit/s	1.3km
20 kbit/s	3.3km
10 kbit/s	6.6km
5 kbit/s	13km

Table 3.1 Relationship of baud rate and distance

3.3 CAN-Bus terminal resistance

In order to improving the communication reliability and eliminating CAN-bus terminal reflection, the two furthest terminal need to connect terminal resistance between CAN_H and CAN_L as shown in figure 3.2. Terminal resistance values determined by the characteristic impedance of the cables. Such as, the characteristic impedance is 120Ω .

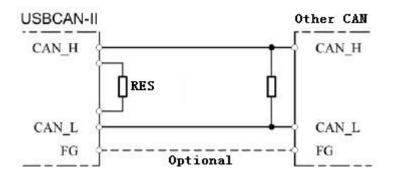


Figure 3.2 USBCAN-modul 16 connect to other CAN devices

Note: USBCAN-modul 16 adapter has integrated 120Ω terminal resistance. Users can choose whether enable. R1 for CAN1 and R2 for CAN2, press it to ON to enabled.

3.4 System LED

USBCAN-modul 16 adapter with 4 PWR indicators, 16 ERR indicators, 16 RUN indicators to indicate the adapter status. More functions are shown in table 3.2 and 3.3.

Indicator	Colour	State
PWR	Red+Green	Power indicator
RUN	Green	System indicator
ERROR	Red	Error light

 Table 3.2 USBCAN-modul 16 adapter indicator LED

USB interface connection is normal, PWR indicator will be light; when the CAN side of the data transmission when the corresponding channel RUN will be light; when there is a data error ERROR will be light.

Indicator	State	Meaning			
PWR	Red ON	USB Power supply normal			
PWK	Green ON	System Power supply normal			
	OFF	System Power supply error			
DIDI	Blinking	CAN-Bus data transmission			
RUN	OFF	No data			
	ON	Error			
ERROR	OFF	Normal			

Table 3.3

4 ECAN Tools introduction

Users can use ECAN Tools software to receive and transmit CAN data. Flexible use of functions can help to more with less.

4.1 Start

1.If ECAN Tools has been installed, users can directly run it on the desktop.

选择设备类型:	USBCAN-V5 🗸	打开设备	
name	Hardware GC5. 02. 27	ID	
CAN1 CAN2 通道: 名称: 1	CAN1 JSBCAN-II-V5		1
工作模式:	CAN = 1 → 正常模式 →		
	1000 ¥ K 自动识别波特率		

2. Choose the device type and click "open device", one adapter will shown in the below.

3. Choose work mode. Software provides three kinds of work mode: normal, listen, loopback.

Normal: use this mode to transmit or receive data.

Listen: use this mode to receive data only, and don't send response or clock.

loopback: use this mode to test if the adapter is working well. 4.Choose baud rate according to the CAN-bus, don't match will lead to

communication failed.

If you don't know the baud rate, you can use "automatic identification of baud rate" function to adapt.

4.2 Transmit/Receive data

Transmitting and receiving is the basic function of ECAN Tools, in this interface, users can directly see the received CAN data, and send the data to CAN-bus. Product data sheet

	保存数据 -	(二) 其	时保存 •	┃ 暫停显示	□ 显示模式	🤰 清除	₩ 減波设	置		•	8	高级属	屏蔽		▋ 显示错i	吴帧	ŧ
[序号	帧间	隔时间us	名称	фдір	帧类型	帧格式	DLC	数据						中贞	数里	
	00000000	9.77	5.615	接收	000	DATA	STANDARD	8	00 01	02	03	04 05	06	07	1		
	00000001	0.17	7.816	接收	000	DATA	STANDARD	8	00 01	02	03	04 05	06	07	1		
	00000002	1.25	8.313	接收	000	DATA	STANDARD	8	00 01	02	03	04 05	06	07	1		
	00000003	0.21	6.000	接收	000	DATA	STANDARD	8	00 01	02	03	04 05	06	07	1		
	00000004	0.24	6.686	接收	000	DATA	STANDARD	8	00 01	02	03	04 05	06	07	1		
	00000005	0.00	0.140	发送成功	000	DATA	STANDARD	8	00 01	02	03	04 05	06	07	1		
	00000006	0.22	4.000	发送成功	000	DATA	STANDARD	8	00 01	02	03	04 05	06	07	1		
	00000007	0.35	4.000	发送成功	000	DATA	STANDARD	8	00 01	02	03	04 05	06	Ur	1		
		→ 发道 方式:	送文件 、 正常发送	↓ 0 P/S 2	党送帧数:3 多次发说	<u> 送</u> 时: [」帧ID每发	送——帅道 步	ŧ (发	送数	据每次	支送	—	递增		
	中贞之) 世	标准帧	•	中贞ID (HEX) :	00000000) 数据	(HEX):	00 01	02 (03 0	4 05	06 (77	发送		
	巾贞才	各式:	数据帧	-	发送次数:	1	每次	发送间隔	:(ms)	10					停止		
								间隔最小				数: 1 每次发送间隔: (ms) 10					

4.3 CAN-Bus diagnosis function

CAN-Bus diagnosis function can detect the bus error frames and bus arbitration lost.

 can_1 控制状态 ●接收寄存器满 ●正在发送 ●接收寄存器溢 ●错误报警 ●发送寄存器空 ●缓存区溢出 ●发送结束 ●总线数据错误 ●正在接收 ●总线仲裁错误 	can_1 总线状态 ● 总线正常 ● 被动错误 ● 主动错误 ● 总线关闭	- 总线错误计数 接收: 0 发送: 0	
---	--	----------------------------	--

CAN bus status display: indicate the CAN bus status include: bus normal, passive error, active error, bus off.

The CAN controller FIFO overflow: message within a certain period of time is too dense, lead to data loss.

The CAN controller error alarm: when many of errors on the bus, error counter exceeds the alarm threshold, and display the error count.

The CAN controller negative error: when many of send or receive errors, lead to the CAN controller into the negative state, and display the error count.

CAN bus controller error: when nodes send or receive errors, error counter value will be accumulate, and can catch the wrong information, such as ACK, CRC error and so on.

4.4 Relay & Offline

4.4.1 Relay mode

CAN relay function can connect two CAN-Bus together whether they have the same baud rate, the data flow can be seen in computer. This function can be used to see the two nodes of data flow, which data is from which node, it can be used to crack communication protocol between two nodes.

文	作 操作	视图窗口	帮助										
F		4- 11 ≈	s 💊 🛛 🗖 🛤	XXX	r	🔯 🚓 🛙		🕴 添加	•4)复	位 🏠 🎟	\$	🔄 工作模式	ĉ
/	CAN1 Recei	ive/Transmit	CAN2 Receive	/Transmit		1							
-	保存数据,	• 🙀 实时保存 •	暫停显示	🔁 显示模式	🍐 清除	│ 🌾 濾波设	置		- 6	、高级屏蔽	-	显示错误帧	ŧ
	序号	帧间隔时间us	名称	фдID	帧类型	帧格式	DLC	数据				帧数量	
	00000000	3144.272.719	Cani	000	DATA	STANDARD	8	00 01	02 03	3 04 05 06	07	1	
	00000001	2.109.093	Canl	000	DATA	STANDARD	8	00 01	02 03	3 04 05 06	07	1	
	00000002	11.587.433	Can2	000	DATA	STANDARD	8	00 01	02 03	3 04 05 06	07	1	
	00000003	0.393.120	Can2	000	DATA	STANDARD	8	00 01	02 03	3 04 05 06	07	1	
	00000004	2.926.217	Can2	000	DATA	STANDARD	8	00 01	02 03	3 04 05 06	07	1	
	00000005	0.152.859	Can2	000	DATA	STANDARD	8	00 01	02 03	8 04 05 06	07	1	
ė.	00000006	0.669.296	Can2	000	DATA	STANDARD	8	00 01	02 03	3 04 05 06	07	1	
2	00000007	10.153.184	Canl	000	DATA	STANDARD	8	00 01	02 03	8 04 05 06	07	1	
1	80000008	0.153.631	Canl	000	DATA	STANDARD	8	00 01	02 03	3 04 05 06	07	1	
	00000009	0.175.423	Canl	000	DATA	STANDARD	8	00 01	02 03	3 04 05 06	07	1	

4.4.2 Offline mode

Users can create an instructions in notepad (.txt) and download it to the adapter, after that the adapter can into offline mode and do as the instructions each time the adapter power up. Instructions such as: transmit, delay, triggering, receiving modified send and so on. This function can easily achieve automatic control and can be used in the production line test, crack communication protocol and so on, even though users can not secondary development.

Example:

10,1,4000000,0000,144,0,8,01 02 03 04 05 06 07 08,100,500

Means:

power up wait 10ms,

initialize the CAN1 channel to transmit and receive data,

don't set the trigger,

don't replace ID and data,

transmit CAN ID 0x144, standard, data length eight, data 01 02 03 04 05 06 07 08, send times 100 times, time interval 500ms.

4.5 Other functions

🤯 保存数据 • 📷 实时保存 • 📗 暂停显示 💭 显示模式 🍾 清除 💚 滤波设置 🔹 🖌 高级屏蔽 🔄 显示描误帧 |错误帧率:0.0% 🔶 0 P/S 接收帧数:0

Save data: save the receiving list, save format: txt, can, csv and binary.

Display mode: scroll mode and list mode, list mode can classified data together according to the rules.

Filter settings: users can set multi-stage filtering by editing the filter ID.

Data mask: masked ID is not displayed.

Error frames: error frames on the bus can be displayed / hidden.

If you want to know more about the software specific function and usage, please see the "ECAN Tools software instructions" document.

5 Secondary development

We will provide interface, example and library for secondary development customers. Dll and library named: "ECANVCI.h", "ECANVCI.lib", "ECANVCI.dll". These libraries standards compliant, users can use these in VC, VB and some other programming environment, to use these libraries, please see "ECAN dynamic library manual" and Figure 5.1.

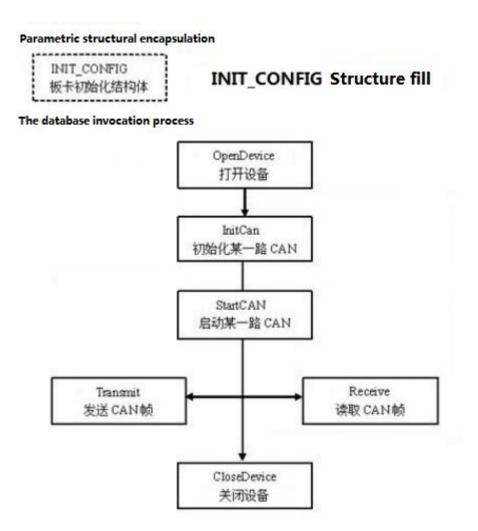


Figure 5.1 Secondary development function call process

6 Technical Specifications

Connection	
РС	USB, type A
CAN	DB9
Interface	
USB	USB2.0 full speed, USB 1.1,USB3.0
CAN	ISO 11898 standard, support CAN2.0A/B
CAN baud rate	5Kbit/s~1Mbit/s
Isolation	1500V, DC-DC
CAN terminal resister	Integrated, code switch to enable
Power	
Voltage	+24V DC
Current	200mA (Max)
Environment	
Temperature	-40°C~+85°C
Humidness	15%~90%RH, without condensation
EMC test	EN 55024:2011-09
	EN 55022:2011-12
IP grade	IP 20
Basic	
Dimension	482mm *119mm *44mm
Weight	630g

Appendix: CAN2.0B frame format

CAN2.0B standard frame

CAN standard frame format is 11 bytes, including two parts: information and data. The first 3 bytes for information.

Bit Byte	7	6	5	4	3	2	1	0			
1	FF	RTR	×	×	DLC						
2		(Message identifier) ID.10—ID.3									
3	ID.2—ID.0			×	×	×	×	×			
4	data 1										
5		data 2									
6		data 3									
7		data 4									
8		data 5									
9		data 6									
10		data 7									
11		data ⁸									

Byte 1 for the frame information. Seventh (FF) means the frame format, in the standard frame, FF = 0; Sixth (RTR) means the type of frame, RTR = 0 means for the data frame, RTR = 1 for remote frame; DLC means the length of the data.

Byte 2, 3 for the message identifier.

Bytes 4~11 for the data of the data frame, remote frame is invalid.

CAN2.0B extended frame

CAN extended frame format is 13 bytes, including two parts: information and data. The first 5 bytes for information.

Bit Byte	7	6	5	4	3	2	1	0				
1	FF	RTR	×	×	× DLC							
2		(Message identifier) ID.28—ID.21										
3	ID.20—ID.13											
2	ID.12—ID.5											
3		ID.4	×	×	×							
4	data 1											
5	data 2											
6	data 3											
7	data 4											
8	data 5											
9	data 6											
10	data 7											
11	data ⁸											

Byte 1 for the frame information. Seventh (FF) means the frame format, in the standard frame, FF = 0; Sixth (RTR) means the type of frame, RTR = 0 means for the data frame, RTR = 1 for remote frame; DLC means the length of the data.

Byte 2~5 for the message identifier.

Bytes 4~11 for the data of the data frame, remote frame is invalid.

Sales and service

Shenyang Guangcheng Technology Co., Ltd.

Address: Industrial Design Center, No. 42 Chongshan

Middle Road, Huanggu District, Shenyang

City, Liaoning Province.

QQ: 2881884588

E-mail: 2881884588@qq.com

Tel: +86-24-31230060

Website: <u>www1.gcanbox.com</u>

Sales and service Tel: +86-18309815706

After - sales service telephone Number: +86-13840170070

WeChat Number:13840170070

